
The Inca Test Harness and Reporting Framework

Shava Smallen † Catherine Olschanowsky † Kate Ericson †

Pete Beckman ∗ Jennifer M. Schopf ∗

† San Diego Supercomputer Center
{ssmallen, cmills, kericson}@sdsc.edu

∗ Argonne National Laboratory
{beckman, jms}@mcs.anl.gov

ABSTRACT
Virtual organizations (VOs), communities that enable coordinated
resource sharing among multiple sites, are becoming more preva-
lent in the high-performance computing community. In order to
promote cross-site resource usability, most VOs prepare service
agreements that include a minimum set of common resource func-
tionality, starting with a common software stack and evolving into
more complicated service and interoperability agreements. VO ser-
vice agreements are often difficult to verify and maintain, however,
because the sites are dynamic and autonomous. Automated verifi-
cation of service agreements is critical: manual and user tests are
not practical on a large scale.

The Inca test harness and reporting framework is a generic sys-
tem for the automated testing, data collection, verification, and
monitoring of service agreements. This paper describes Inca’s ar-
chitecture, system impact, and performance. Inca is being used by
the TeraGrid project to verify software installations, monitor ser-
vice availability, and collect performance data.

1. INTRODUCTION
Production Grids have become prevalent in the high-

performance computing community as a platform for running
large-scale compute-intensive and data-intensive applications [35,
7, 31, 19, 17]. From an administrative perspective, the degree of
coordination at the site and resource level can vary from one Grid
to another. Some Grids are uncoordinated collections of resources,
while others are more tightly coordinated through operational ser-
vice agreements. The latter Grids and their management structures
are known asvirtual organizations(VOs) [9].

VO service agreementsare created to describe the requirements
for resource sharing and operational policies across VO resources
as quantifiable properties. They can describe system availability,
performance of basic services, or software stack validation and ver-
ification. For example, a service agreement can require a resource
to provide a high-performance file system with specific minimum

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
0-7695-2153-3/04$20.00 (c)2004 IEEE .

capabilities, Globus Toolkit GridFTP and gatekeeper services [8],
or a BLAS [20] math library installation. These service agreements
are made available to users so they can understand how to best uti-
lize VO resources and what to expect when they log into such re-
sources. VO service agreements are less formal than an industry
service level agreement (e.g., network or Web hosting), which are
binding contracts between providers and consumers [22]. More-
over, VO service agreements generally do not require that users
be compensated after an agreement violation (such as a malfunc-
tioning Globus Toolkit gatekeeper). VO service agreements help
VOs provide more consistent and interoperable environments to
end users. Unfortunately, service agreements are often difficult to
implement in a VO because of site autonomy and differing admin-
istrative policies.

In order to assess the degree to which VO service agreements
are being implemented consistently across sites, verification is re-
quired. Verification is accomplished by gathering data from each
VO resource, comparing that data to the service agreement, and
measuring compliance.

In this paper, we present theInca test harness and report-
ing framework, a flexible system for automated verification of
VO service agreements. Originally developed for the TeraGrid
project [35], Inca is a general framework that can be adapted and
used by other VOs.

Inca provides components for executing each step required for
VO service agreement verification and a specification for express-
ing various types of data collected from resources. Inca includes
mechanisms for scheduling the execution of information gathering
scripts, as well as collecting, archiving, and publishing data. We
show in this paper that Inca accomplishes these tasks with an aver-
age low system impact on VO resources.

The rest of this paper is structured as follows. Section 2 out-
lines the motivation for creating Inca and describes related work.
Section 3 details Inca’s current design and implementation. Sec-
tion 4 presents an existing Inca deployment, and Section 5 evalu-
ates Inca’s system impact and performance. We conclude with a
discussion of future work.

2. PROJECT MOTIVATION AND RE-
LATED WORK

VOs prepare service agreements to promote cross-site interoper-
ability. In general, a VO service agreement can include agreements
with respect to the software stack, the user environment, a set of re-
quired services, guaranteed response time from the hardware, or an

1

expected transfer time for large data sets. VO service agreements
are broader in scope than typical network service-level agreements
which usually deal directly with network quality of service and are
tailored specifically for that use.

Efforts in monitoring service level agreements include the work
done within the networking community [13] and as well as a grow-
ing body of work in the web services community [29]. Inca is a
generic framework that enables the collection of a wide variety of
data from resources. Data can be archived for performance charac-
terization as well as used during agreement verification. Defining
the scope and depth of service level agreements which will benefit
the Grid community is still a work in progress.

In this paper, we use the term VO service agreements to distin-
guish this work from the already well developed term, service level
agreements, which are common in industry.

2.1 Use Cases
The basic data collection and analysis framework provided by

Inca supports diverse use cases.

• Service Reliability Most VOs deploy a set of persistent ser-
vices for their users that are expected to be available 24/7.
These include Grid tools such as the Globus Toolkit GRAM
gatekeeper [8] or an SRB server [25], as well as SSH servers,
and monitoring frameworks, such as the Network Weather
Service [43]. These services may be susceptible to tempo-
ral bugs and external factors (e.g., misconfiguration). There-
fore, it is important to periodically run test suites in order to
discover problems before the users detect an interruption in
service.

Several Grids create a suite of tests for verifying local service
availability when setting up a Grid. Two examples of Grid
test suites are the NCSA TestGrid Project [34] and the UK
Grid Integration Test Scripts [11]. Both are scripts that run
a predefined set of tests and display the results on a Web
page. However, these approaches lack the ability to easily
change the set of defined tests or to provide multiple views
that display the results.

• Monitoring In addition to basic service reliability, most
VOs deploy a wide range of monitoring software. Cluster
monitoring tools include Ganglia [21], CluMon [5], and Big-
Brother [2]. Each of these tools collects a set of data about
cluster resources and displays it using a variety of client APIs
and Web pages. Inca’s data collection framework can be used
to complement such monitoring tools and act as a uniform
interface to multiple data sources.

Grid monitoring tools used by many VOs include the Globus
Toolkit’s Monitoring and Directory Service (MDS2) [45],
Condor’s Hawkeye [12], the European Data Grid’s R-
GMA [26](based on the Global Grid Forum’s Grid Monitor-
ing Architecture [36]), GridLab’s Testbed Status Monitoring
Tool [14], SCALEA-G [38], and MonALISA [23]. A survey
of other monitoring tools can be found in [10]. Although
Inca’s architecture is similar to such Grid monitoring tools,
its goal is to collect and format data so that it can be com-
pared to a VO service agreement and the result archived.

• Benchmarking Benchmarks help users understand how ap-
plications will perform on Grids. They also can be used
to detect when there are hardware and software perfor-
mance problems. For example, the TeraGrid deploys high-
performance networking, data storage facilities, and clusters;

data is needed to verify that the hardware and software is
functioning at the expected capacity.

Several projects including the GRASP project [4] and Grid-
Bench [39] have begun examining the need for common Grid
benchmarks. As these benchmarks become more widely ac-
cepted, VOs can determine a service agreement that allows
more in-depth verification of resource capabilities. Such
benchmarks can easily be included as part of the set of tests
run by Inca.

• Site Interoperability Certification As a Grid grows, it is
likely to collaborate with similar projects. When two Grid
projects wish to collaborate, they frequently have trouble ver-
ifying the compatibility of their project environments. That
is, the two projects are likely to define a higher-level service
agreement of common functionality between the projects but
may have no way to verify it.

Inca provides a flexible environment to certify compatibility
between sites and projects. For example, a Grid can define a
suite of tests for service agreement verification and run that
suite on any other Grid where user-level access can be ob-
tained. The test suite can test the requirements for a single
application to run on a collaborating Grid or verify a larger
set of requirements for inter-Grid compatibility and applica-
tion porting.

• Software Stack Validation Software package release up-
dates and patches are inevitable. Over the course of a project,
many changes will be made to any initial software deploy-
ment. In many projects, software packages are deployed
by local system administrators according to local constraints
and requirements regarding update and installation proce-
dures. Inca can be used to verify that the installation of
new software and updates does not interfere with the exist-
ing environment. Specially designed test suites can be run
directly after changes and before the system is made avail-
able to users to ensure a stable environment.

The test suites are a combination of regression and integra-
tion testing commonly practiced in software projects. Sev-
eral tools exist for automating this type of testing [6, 37] in
a single software project. Inca is used to test interactions
between several software packages installed on multiple pro-
duction systems.

2.2 Service Agreement Verification Chal-
lenges

VO service agreements include many facets of the overall project
and resources. The TeraGrid service agreement, for example, is
designed to facilitate the development and execution of scientific
applications. According to the current TeraGrid service agreement,
participating sites must deploy a common user environment, the
TeraGrid Hosting Environment, that includes a software stack and
default user environment. The TeraGrid Hosting Environment al-
lows users to develop applications for the common environment
rather than for each site or resource independently.

Although service agreements can greatly benefit users, site au-
tonomy and different administrative policies make such agreements
difficult to implement in practice. Sites may interpret service agree-
ments differently, and miscommunications may go undiscovered
until users log into systems and find inconsistencies. It is there-
fore important to provide VO-level validation and verification [40]
by measuring compliance to the service agreement through a set of
predefined metrics. In the case of the TeraGrid, differences in the

2

interpretation of the service agreements clearly indicated that a tool
was needed to verify the software stack and environment.

A site’s service agreement compliance cannot be guaranteed
throughout the life of a VO by one-time verification. Since Grid re-
sources and service agreements change over time, ongoing valida-
tion is required to measure a site’s continued compliance. Amplify-
ing this requirement is the increased probability of failure because
of the large number of complex components involved in Grid in-
frastructure and their interdependencies. Frequent verification pro-
vides quick notification of failures, enabling system administrators
to respond immediately to problems as they are detected by the
verification process, rather than reacting after users discover them.

2.3 Requirements
Inca was designed and developed to be a general framework for

the automated verification of VO service agreements for the uses
detailed above. The following requirements guided Inca’s design.

• Configurable Data Collection The type and frequency of
data collection may vary at the Grid or resource level. Hence,
a fine granularity of control over content is required, imply-
ing that the process of adding and removing tests be simple
and controlled on a per resource basis. Furthermore, the fre-
quency of data collection must be configurable on a per test
basis in order to accommodate the diverse nature of data col-
lected.

• Central Configuration Changes to the data collected from
a resource and its frequency of collection are inevitable. A
central location for denoting these changes, as well as an au-
tomated mechanism for communicating them to participating
resources, is needed.

• Data AccessData need to be accessible from a single access
point in order to increase usability. In order to support a di-
verse set of data consumers, access should be made available
through standard interfaces.

• Persistent Data StorageArchiving collected data provides
a historical perspective on VO health and performance and
aids in detecting performance problems.

• Low System Impact Data collection infrastructure requires
a component to reside on the resource. The resource compo-
nent cannot be invasive and must not impact a user’s interac-
tion with the system.

• Scalability Low system impact should be maintained as the
number of resources and amount of data increase. Expecting
data querying times to remain the same is unreasonable, but
they should scale accordingly.

3. DESIGN AND IMPLEMENTATION
In order to encourage modularity and low system impact on re-

sources, Inca is implemented by using a client-server architecture
as depicted in Figure 1. The client components (distributed con-
trollers and reporters) are designed to be lightweight and are in-
stalled on every VO resource. The server receives data from the
distributed controllers and coordinates the scheduling and config-
uration of reporters; it is composed of the centralized controller,
depot, and querying interface. Data consumers then access that
data through the server, filter the data, compare it to an existing VO
service agreement and visualize it in a meaningful way for specific
user groups.

� � � � � � � � � � 	 � �

 � 	 �
 � � � � � � � �

� � � � � � � � � � � � �

� � � �
� �

� �

� 	 � � � �

� � � � � � � �
� 	 � � � �

� � � � � �

� � � � � � � �
 � � � � � � 	 �

� �

 ! " # $

% % %

� � � � � � 	 � &

� � � � � �

�
�

�

� � � � � � ' � � � �
� � � � � � � � � �

� � � � � � 	 � (

� � � � � �

�
�

�

� � � � � � ' � � � �
� � � � � � � � � �

� � � � � � 	 �)

� � � � � �

�
�

�

� � � � � � ' � � � �
� � � � � � � � � �

Figure 1: Inca client/server architecture. The R in the figure
represents reporter.

3.1 Clients
Theclients(reporters and distributed controller) interact directly

with VO resources to gather data at a user level. In an effort to
minimize system impact, the client functionality has been restricted
to data collection. Resulting data is immediately forwarded to the
server for processing.

3.1.1 User Account and Privileges
Inca is designed to verify operability from a user perspective,

therefore, the clients can and should be run from a regular user
account and have no special privileges to the system. Often
when administrators customize their environment to get software to
function correctly, they unintentionally create a disparity between
their functioning account and environment and the average user’s.
Therefore, it is important that the Inca user account be setup in the
same manner as a default account given to a new user (i.e., with
no customizations) in order to appropriately detect user problems.
Furthermore, information needed to configure the reporters (e.g.,
Globus Toolkit gatekeeper contact strings) should come directly
from the VO user guides and tutorials. In order to execute Grid re-
porters, the user account will need to be setup with a valid GSI [42]
credential and be able to generate proxies for testing according to
their VO’s security policy.

3.1.2 Reporters
A reporter interacts directly with a resource to perform a test,

benchmark, or query. For example, a reporter can publish the ver-
sion of a software package or perform a unit test to evaluate soft-
ware functionality. Reporters do not control their execution sched-
ule. Scheduling is directly controlled by the distributed controllers.

A reporter can be written in any language, but its output should
be formatted in XML and follow the Inca reporter specifica-
tion [15]. The reporter specification is designed to allow for the
expression of a wide variety of data while providing enough struc-
ture to enable generic data handling. This is achieved by separating

3

<metric>
<ID>bandwidth</ID>
<statistic>
<ID>upperBound</ID>
<value>998.67</value>
<units>Mbps</units>

</statistic>
<statistic>
<ID>lowerBound</ID>
<value>984.99</value>
<units>Mbps</units>

</statistic>
</metric>

Figure 2: XML snippet describing a lower and upper bound on
a bandwidth measurement.

the results of the report into three sections: header, footer, and body.
The format for the header and footer are uniform across all re-

porters. Aheaderprovides metadata about the reporter, including
the machine it ran on, the time at which it ran, and the input ar-
guments supplied at run time. Thefooter contains an exit status
indicating success or failure; if a failure is reported, a brief error
message is required.

The variable portion of the report is abody that expresses the
information collected by the reporter. For example, the body can
be the version of a software package or measured network through-
put to a machine such as the SRB [41] server. The schema for
the body is open; there is not a set XML schema. Restrictions
on tag formatting are enforced to enable generic data handling
by the Inca framework. The most important restriction is that
each branch of the XML document (i.e., an element containing
other elements) have a unique identifier. With these unique iden-
tifiers, a unique path can then be constructed to locate any piece
of data. For example, to locate the lower-bound bandwidth value
in the XML snippet shown in Figure 2, one can use the path
value,statistic=lowerBound,metric=bandwidth.

Inca includes an extensible set of Perl and Python APIs for re-
porter development. The APIs help developers to comply with the
Inca reporter specifications, cut development time, and reduce du-
plicate code. Reporters created with the APIs are therefore typi-
cally small in size (less than 100 lines of code). Table 1 shows the
size of reporters currently deployed to TeraGrid.

3.1.3 Distributed Controllers
Thedistributed controllersare responsible for managing the ex-

ecution of reporters on a resource and forwarding data to the Inca
server. Distributed controllers are designed to receive execution in-
structions in the form of a specification file from the Inca server.
In the current implementation this process is done manually. The
specification file describes execution details for each reporter in-
cluding frequency, expected run time, and input arguments. In or-
der to distribute the impact of the reporter execution on a VO re-
source, reporters are scheduled to run at random times during their
period. For example, a reporter executed hourly can be randomly
chosen to run at the 20th minute of each hour, while another chosen
to run on the 31st minute of each hour. The frequency of execution
for a reporter is then expressed in the format of a cron table entry
and can be configured on a per reporter basis. Since reporters can
have differing impact on the system (e.g., a BLAS unit test will
have more impact on the system than will a query for the version
of Condor-G), it is important to be able to schedule reporters on

Table 1: Reporter sizes for TeraGrid deployment (in lines of
code).

Number of
Lines of Code Reporters

0-50 106
50-100 9
100-150 7
150-200 1
200-250 1
300-350 1
450-500 1
1250-1300 1
1350-1400 1
1500-1550 1
1600-1650 1
Total 130

different frequencies.
Each reporter also has a field, called abranch identifier, that

indicates to the Inca server where the data should be stored. A
branch identifier is a comma delimited list of name/value pairs
similar to LDAP distinguished names [44]. The following example
indicates where network performance data collected by the tool
pathload running fromsiteA to siteB in samplegrid should
be placed.

dest=siteB,tool=pathload,
performance=network,site=siteA,vo=samplegrid

The distributed controller is implemented as a Perl daemon with
built-in cron capability (using the Schedule::Cron Perl library).
When a reporter is scheduled to run, the daemon wakes up and
forks off a process to execute it. The daemon also monitors all
forked processes and terminates them if they exceed expected run
time. The distributed controller communicates a report to the Inca
server along with its branch identifier using a TCP connection. If
there is an error executing a reporter, a special report is sent to the
central controller to indicate an error.

3.2 Server
The Incaserverhandles coordination of clients as well as data

collection and management. In the current implementation, the
Inca server is a centralized component consisting of the centralized
controller, depot, and querying interface.

3.2.1 Centralized Controller
Thecentralized controllermanages the dissemination of execu-

tion instructions to the clients and receives data from the distributed
controllers and forwards this data to the depot. The current central-
ized controller is implemented as a Perl daemon and listens on a
TCP port for incoming reports from the distributed controllers. We
recommend that the centralized controller be run under a nonpriv-
ileged account. The TCP port number is configurable. When the
centralized controller receives an incoming connection from a dis-
tributed controller, it checks the host against a list of hostnames to
see whether it should accept the connection. If the host is verified,
the centralized controller receives the report and branch identifier

4

from the distributed controller. It then creates a XMLenvelope,
where the content of the envelope is the report and the envelope
address is the branch identifier. The envelope is forwarded to the
depot through a Web services interface for storage.

3.2.2 Depot
The depot is Inca’s facility for data management, caching and

archiving. The design of the depot was driven by the need to require
very little administration.

The most important feature of the depot is that new data with
unknown schemas can be added to the cache with no configuration.
Reports are received by the depot wrapped in an envelope. The de-
pot uses the branch identifier from the envelope to identify a unique
location for that report to be saved. Further updates of the report
will result in the replacement of the previous copy. Since no addi-
tional configuration is needed, the effort to add new data, including
new resources and reporters, is lowered.

The cache is implemented by using a SAX parser [3] and a single
XML file. The SAX parser is used for both updates and queries to
the cache. The initial design included the use of DOM parsing on
the cache, but it was quickly discovered that the memory require-
ments of the DOM parser grew too rapidly with the size of the data,
slowing the update and query times.

Archiving of numerical data is done by RRDTool [28]. In order
to indicate that a piece of data is to be archived, an archival policy
for that data must be uploaded to the depot. The archival policy de-
scribes the granularity of archiving (e.g., every fifth measurement)
and the length of history to keep. This configuration has to be done
only once and one can assign several pieces of data the same pol-
icy at the same time or can assign policies on a reporter-by-reporter
basis. RRDTool is a scalable solution for archiving numerical data
and supports a querying interface that is both fast and flexible.

3.2.3 Querying Interface
The querying interfacesupports queries on both cached and

archived data and will be optimized for common queries. In addi-
tion to filtering cached data to satisfy common user queries (e.g., by
site, resource, software), the querying interface supports the tempo-
ral nature of archived data queries.

Querying the depot is currently split into two separate interfaces.
One is for the retrieval of the most current data, which is held in the
cache; the second is for graphing historical data from the archive.

Current data is requested through a web service call to the de-
pot. If a branch identifier is supplied only the portion of the cache
matching that identifier will be returned; this can either be a single
report, a set of related reports, or a specific portion of a report. In
the case that no branch identifier is supplied, the entire contents of
the cache is returned. Depending on the cache size, the latter option
tasks the data consumer with a large amount of XML processing, a
process that can be time consuming.

Archived data is also retrieved through a Web service call, which
wraps the interface provided by RRDTool.

3.3 Data Consumers
A data consumerqueries the Inca server for data. Often, data

consumers display the comparison of data stored at the Inca server
to a machine-readable description of the service agreements and
apply predefined metrics to express the degree of resource compli-
ance. For example, a metric for measuring Grid service availability
on a resource can be defined as follows: (1) at least one site can
access the resource’s Grid service, and (2) the resource can access
at least one other site’s Grid service.

Data consumers can be implemented as CGI scripts that visualize

� � � � � �

� � � � 	 �
 � � �
 � � 	 � � �

� � � �

� � � � � �

� � �

� � � � � �
� � � � � � � � ! � � � " #

� � � � � �
� � � � � ! � � � $ #

� % � & � � '

� � � � � �
� � � � � ! � � � " #

� � � �

� � � � � �
� � � � � ! � � � " #

� � (! �
� � � � % #

� � � � � % �
� ! � � � ! � � � �

� � � � % #

� � � � � �
� � � � � ! � � � " #

� � � � � �
� � �)) $ # � � �

� � � � � �
� � � * � � � + #

� � � � � �
� � % � ' � � #� � � � � �

� � � � � ! � � � #
� � � � � �

� � , � � � #

Figure 3: Inca deployment to TeraGrid.

results through Web pages, an interactive Java GUI, or command-
line scripts. An example of a data consumer in common use by the
TeraGrid project is detailed in Section 4.

4. DEPLOYMENT
This section describes the Inca deployment on TeraGrid, which

has been in use for over a year. At the time this paper was written,
the TeraGrid’s production participants were Argonne National Lab-
oratory (ANL), California Institute of Technology (Caltech), the
National Center for Supercomputing Applications (NCSA), Pitts-
burgh Supercomputing Center (PSC), and San Diego Supercom-
puter Center (SDSC). These sites collectively provided 20 TF of
compute power and 1 PB of data storage interconnected through a
40 Gb/s backbone. Section 4.1 describes how Inca is being used to
verify the software and environment setup of the TeraGrid, and Sec-
tion 4.2 describes performance data being collected through Inca.

4.1 TeraGrid Hosting Environment Verifica-
tion and Validation

Every TeraGrid site is required to provide the TeraGrid Hosting
Environment, a software stack, default user environment, and com-
mon methods for manipulating their environment through a tool
called SoftEnv [30] to facilitate application development by provid-
ing a consistent environment at all of the TeraGrid sites. In order
to verify the TeraGrid’s service agreement, customized data con-
sumers and reporters were developed.

Inca’s TeraGrid deployment is illustrated in Figure 3. The Inca
server components, the centralized controller, and the depot (within
a Tomcat [33] server) were hosted at SDSC oninca.sdsc.edu.
Inca’s client components, reporters, and distributed controllers ran
on ten resources at ANL, Caltech, NCSA, PSC, Purdue∗, and
SDSC. In order to detect user level problems, all client components
ran under a default user account called inca.

In order to query the resources for compliance to the TeraGrid
Hosting Environment, reporters were written to collect versions
∗Purdue University is one of the recently added TeraGrid sites but
is not yet in production.

5

Table 2: Current number of Inca reporters executing per hour
on TeraGrid systems.

Number of
Site Machine Reporters

ANL tg-viz-login1.uc.teragrid.org 136
tg-login2.uc.teragrid.org 128

Caltech tg-login1.caltech.teragrid.org 128
NCSA tg-login1.ncsa.teragrid.org 128
PSC rachel.psc.edu 71

lemieux.psc.edu 71
Purdue cycle.cc.purdue.edu 128

tg-login.rcs.purdue.edu 71
SDSC tg-login1.sdsc.teragrid.org 128

dslogin.sdsc.edu 71

Total 1060

of installed packages and test package functionality. A reporter
was also written to collect the set of environment variables in the
default user environment and a resource’s SoftEnv database. In
addition, we deployed a set of cross-site tests to check for basic
service availability including Globus Toolkit GRAM gatekeepers,
GridFTP, OpenSSH, and SRB. The distributed controller’s config-
uration, illustrating the number of reporters executed on each re-
source and their frequency of execution, is summarized in Table 2.

In order to visualize resource compliance to the TeraGrid Host-
ing Environment, a machine-readable version of the service agree-
ment was formatted in XML. A resource’s status is divided into
three categories: Grid, Development, and Cluster. The Grid cate-
gory comprises tests that verify the status of Grid packages such
as the Globus Toolkit, Condor-G, GridFTP, and SRB; the Devel-
opment category comprises tests that verify the status of libraries
such as MPICH, ATLAS, HDF4, and HDF5; and the Cluster cate-
gory comprises tests that verify the status of cluster-level packages
such as the batch scheduler.

CGI scripts were written to compare the data collected from
the resources to the service agreement and display the results in
red/green status pages. For example, the data consumer in Figure 4
displays each resource’s status in the form of percentages for each
category described above and for all three categories combined. If
there are errors, the test that has failed is listed and a URL is given
to display the error message and the metadata for that test for de-
bugging. Other status page formats are also provided, but we have
found summary percentages to be the most effective in illustrat-
ing when an error is occurred. These summary percentages are
archived and can be useful in illustrating the stability of resources.
Figure 5 shows the Grid availability over a week’s period for one
of the TeraGrid’s resources calculated every ten minutes. Mondays
are preventative-maintenance days, so some drop in availability is
expected but the other times indicate a system failure.

Another status page shows a detailed view of the software stack,
listing the packages and status for each resource. Green indicates
that an acceptable version of a software package is located on a
resource and the unit tests pass; red indicates otherwise. Similar
status pages are shown to display the default user environment and
SoftEnv status. The cross-site test data is included as part of the
unit tests defined for each software package. Currently, over 900
pieces of data are compared and verified.

Mon Tue Wed Thu Fri Sat Sun
 0

 50

 100

%
 a

va
ila

bl
e

Grid availablility

Figure 5: Example of Grid availability on a TeraGrid resource.

07/01/04 07/03/04 07/05/04
 0.0

 0.5 k

 1.0 k

M
b/

s

Possible Bandwidth Range

Figure 6: Bandwidth data measured from Pathload running
from SDSC to Caltech.

4.2 TeraGrid Performance
In order to better understand how applications will perform on

the TeraGrid, it is essential to run benchmarks on a periodic sched-
ule to gather performance characteristics of TeraGrid. Further-
more, system updates such as recompiling the kernel or updating
an Ethernet driver are subject to misconfiguration. Periodic bench-
marks can be used to detect and diagnose performance problems
when they occur. A reporter which executes the GRASP [4] bench-
marks has been implemented and is currently collecting data. We
have also implemented a number of network reporters that exe-
cute nonintrusive network monitoring tools such as Pathload [18],
Pathchirp [27], and Spruce [32]. Figure 6 shows bandwidth mea-
surements collected from the Pathload tool every hour from SDSC
to Caltech.

5. IMPACT AND PERFORMANCE
In this section, we discuss Inca’s impact on the monitored VO re-

sources and analyze the Inca server performance. Table 3 displays
the characteristics of the machines described in the following sub-
sections. Section 5.1 discusses the system impact of the distributed
controller, the client component of Inca installed on each VO re-
source. Section 5.2 discusses the performance of the depot, Inca’s
storage facility.

5.1 Distributed Controller System Impact
Recall from Section 3.1.3 that the distributed controller main-

tains and runs a schedule for reporter execution on a resource,
forking a process to run a single reporter. In order to assess the
impact of the distributed controller on VO resources, we moni-
tored the TeraGrid deployment during the week of June 29–July
6. We logged the CPU and memory usage for the distributed con-
troller running at Caltech every 10–11 seconds using the Unix sys-
tem command top resulting in 57,149 measurements. Caltech’s
distributed controller executed 128 reporters every hour (from Ta-
ble 2).

On average, the distributed controller’s CPU usage was 0.02%
per CPU and its memory usage was 35 MB of physical memory.
Figures 7(a) and 7(b) show a more detailed view of the collected
data distribution. Since the built-in cron capability of the reporter
uses fork to run a process from its cron table, the memory usage

6

Figure 4: The TeraGrid hosting environment status summary page.

of the distributed controller was higher than expected. The aver-
age memory usage (35 MB) corresponds to the execution of the
main controller process (18 MB) and one forked process (forked
by Schedule::Cron). An unknown bug caused the memory usage to
jump to 1 GB at one point because of a large number of forks in the
controller. Memory usage of the distributed controller can be im-
proved by enhancing the Schedule::Cron library to use a threaded
implementation.

5.2 Depot Performance
The depot caches and optionally archives each report it receives.

Recall that the depot receives envelopes from the centralized con-
troller. The time that the centralized controller must wait while the
depot receives and processes the envelope is referred to as the re-
sponse time. The depot must be able to perform at a rate equal
to or faster than the rate that reports are generated by the clients.
Section 5.2.1 analyzes the depot response times in the current Inca
TeraGrid deployment. In order to investigate the effects of larger
deployments, we created synthetic deployments described in Sec-
tion 5.2.2 that allowed us to analyze cache sizes greater than the
existing TeraGrid deployment. We found that the response time
depends on two factors: cache size and report size.

5.2.1 TeraGrid Results

The TeraGrid depot was monitored for a week from July 7-July
14, 2004. The cache size remained steady at 1.5 MB. During the
week, the depot received 151,955 reports from the centralized con-
troller, at a mean rate of 15.07 reports per minute. As shown in
Figure 8, 97.64% of the reports received were small, less than 10
KB. The amount of data received was 259.36 MB, at an average
rate of 26.35 KB/min. Table 4 shows statistics on the response
times for the TeraGrid deployment. On average, the response was
quick enough to satisfy the needs of this deployment, but at times it
jumped to very high numbers. The TeraGrid depot does not run on
a dedicated machine and therefore contends with other processes
for system resources.

5.2.2 Synthetic Results
To evaluate how well the depot handles cache sizes larger than

the TeraGrid’s, we ran a synthetic workload on a separate deploy-
ment. The deployment was similar to the TeraGrid’s; the main
difference was that only a single client was running. Because all
requests are serialized through the centralized controller, multiple
clients were emulated by a single client running at a higher fre-
quency; this approach made it easier to control the frequency of
updates. All components were run oninca.sdsc.edu.

The synthetic workload was created by using a simple reporter
that read one of four premade reports and printed its contents to

7

Table 3: Characteristics of the machines used in our impact and performance experiments.

Num. CPU Speed Memory
Hostname CPUs Processor Type (MHz) (GB)

inca.sdsc.edu 4 Intel Xeon 2457 2.0
tg-login1.caltech.teragrid.org 2 Intel Itanium 2 1296 6.0

2^0 2^2 2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18
0

5

10

15

20

%
 C

P
U

Number of occurrences

99.7%

0.21%

0.028%

0.0122%

0.00875%

0.00525%

0.0105%

0.00525%

0.0122%

0.00175%

CPU Utilization Histogram for Inca Distributed Controller

(a)

2^0 2^2 2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18
0

200

400

600

800

1000

1200

M
B

Number of occurrences

97.6%

1.53%

0.339%

0.257%

0.213%

0.021%

0.014%

0.014%

0.00875%

0.0035%

Memory Utilization Histogram for Inca Distributed Controller

(b)

Figure 7: Horizontal histograms showing the CPU and memory utilization for the Inca distributed controller running at Caltech.
Measurements were taken every 10–11 seconds over a week period resulting in 57,149 data points. Figure 7(a) shows that 99.7% of
the time CPU utilization was less than 2% per CPU and Figure 7(b) showsthat 97.6% of the time memory utilization was less than
107 MB.

standard out. The four synthetic report sizes were 851, 9,257,
23,168, and 45,527 bytes. These file sizes are a sample of actual
TeraGrid reporter sizes. A specification file controlled how often
the reporter was run and which file it printed. This made it possible
to control the size of the cache.

To examine the effects of both report size and cache size on re-
sponse time, we varied the specification file to hold the cache size
steady at 0.928 MB, 1.8 MB, 2.7 MB, 3.6 MB, 4.4 MB, and 5.4
MB. Each specification was run for a minimum of two hours.

Response time can be broken into two parts, (1) receiving the
report and unpacking the SOAP envelope, which is done using
Axis [1], and (2), processing the cache to find the appropriate lo-
cation for the report. Figure 9 shows the time taken for the total
response time and the time spent just on processing the cache and
inserting the report. The total response time is the upper line for
each cache size and the insertion time is the lower. As reports grow
larger the amount of time spent unpacking the SOAP envelope (the
area between the lines) increases significantly. Regardless of the
size of the cache, it takes almost 3 seconds to unpack the SOAP
envelope and get the largest report ready for addition to the cache.

The measurements taken on the depot indicate that some changes
need to be made in order for Inca to scale to larger VOs. For exam-
ple, the cache will be split into multiple smaller files to minimize

XML parsing time and the reports will be sent as SOAP attachment
rather than in the body of the SOAP envelope in order to speed
up the unpacking process. These changes will improve the the de-
pot response time. Improving response time will not significantly
increase the depot’s ability to service a large VO consisting of hun-
dreds of resources. In order to address larger scalability concerns
work has begun on distributing the depot functionality.

6. CONCLUSIONS AND FUTURE WORK
The verification of VO service agreements promotes consistency

and stability across Grid resources. The Inca test harness presented
in this paper is a flexible framework for performing service agree-
ment verification. Inca has a low average impact on VO resources
and offers customizable data collection scheduling and represen-
tation. In order to encourage site interoperability, Inca has been
successfully deployed on the TeraGrid to verify its common soft-
ware environment agreement, and over 900 pieces of information
are already being verified. Inca is currently being distributed in
NMI [24] releases and can be downloaded from our Web site [16].
We are also pursuing collaborations with other Grids in addition to
our work with the TeraGrid project.

We plan to enable more advanced test scheduling, specifically
allowing for dependencies. Other future work includes improved

8

Table 4: Data gathered on the TeraGrid installation of the depot over a one-week period in July 2004.

Inca Report Sizes
Response Time Stats(secs)0-4 KB 4-10 KB 10-20 KB 20-30 KB 30-40 KB 40-50 KB

mean 1.46 1.43 1.79 1.98 2.14 2.91
std 1.96 1.78 2.29 2.27 1.98 2.36
min 0.01 0.66 0.01 0.87 0.87 1.41
max 11.18 10.00 10.02 10.01 10.00 10.01
median 0.82 0.87 0.95 1.14 1.48 1.96
number of updates 147861 512 1473 1234 132 383

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100
Report sizes received by the centralized controller

K
B

Number of reports (log2)

97.6%

0.969%

0.812%

0.0869%

0.252%

0.236%

Figure 8: Horizontal histogram showing the report sizes re-
ceived by the centralized controller in the TeraGrid deploy-
ment.

security, additional user interfaces, automated reporter deployment,
and improved data archival methods.

7. ACKNOWLEDGMENTS
The authors would like to thank Karan Bhatia and our review-

ers for their insightful comments. Thanks also to Margaret Murray
and Omid Okhalili for their assistance with the networking bench-
mark reporters and graph. This work was supported by NSF grant
ACI-0122272 and in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Ad-
vanced Scientific Computing Research, Office of Science, U.S. De-
partment of Energy, under contract W-31-109-Eng-38.

8. REFERENCES
[1] Apache axis project page.

http://ws.apache.org/axis.
[2] Big Brother.http://www.bb4.com.
[3] D. Brownell. SAX2. O’Reilly & Associates, Inc., 2002.
[4] G. Chun, H. Dail, H. Casanova, and A. Snavely. Benchmark

Probes for Grid Assessment. Technical Report CS2003-0760,
University of California at San Diego, July 2003.

[5] Clumon Cluster Monitoring Web page.
http://clumon.ncsa.uiuc.edu.

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

Cache Sizes

Report Size (KB)

T
im

e
(s

ec
on

ds
)

Average Depot Response Times

Cache SizesCache Sizes

1.8 MB
3.6 MB
5.4 MB

Figure 9: Response times and XML processing time for the de-
pot using a synthetic workload that varied the cache size and
the reporter size. For each cache size the lower line is the
amount of time spent on XML processing and the upper line
is the total response time.

[6] Dart.http://public.kitware.com/Dart/HTML/
Index.shtml.

[7] M. Ellisman and S. Peltier. Medical Data Federation: The
Biomedical Informatics Research Network. In I. Foster and
C. Kesselman, editors,The Grid: Blueprint for a New
Computing Infrastructure, Second Edition. Morgan
Kaufmann, 2004.

[8] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit.International Journal of
Supercomputer Applications, 11(2):115–128, 1997.

[9] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the
Grid: Enabling Scalable Virtual Organizations.International
Journal of Supercomputer Applications, 15(3):200–222,
2001.

[10] M. Gerndt, R. Wismller, Z. Balaton, G. Gombs, P. Kacsuk,
Z. Neth, N. Podhorszki, H.-L. Truong, T. Fahringer,
M. Bubak, E. Laure, and T. Margalef. Performance Tools for
the Grid: State of the Art and Future. Technical report.

[11] The UK Grid Integration Test Script - GITS.
http://www.soton.ac.uk/∼djb1/gits.html.

[12] Hawkeye.
http://www.cs.wisc.edu/condor/hawkeye.

9

[13] U. Hofmann, I. Miloucheva, and T. Pfeiffenberger. Intermon:
Complex QoS/SLA Analysis in Large Scale Internet
Environment, 2004.

[14] P. Holub, M. Kuba, L. Matyska, and M. Ruda. Grid
Infrastructure Monitoring as Reliable Information Service. In
2nd European Across Grids Conference, 2004.

[15] The Inca Reporter Guide.http://tech.teragrid.
org/inca/www/documentation.html.

[16] The Inca Home Page.
http://tech.teragrid.org/inca/.

[17] International Virtual Data Grid Laboratory Web page.
http://www.ivdgl.org.

[18] M. Jain and C. Dovrolis. Pathload: A Measurement Tool for
End-to-End Available Bandwidth.Proceedings of the 3rd
Passive and Active Measurements Workshop, March 2002.

[19] C. Kesselman, T. Prudhomme, and I. Foster. Distributed
Telepresence: The NEESgrid Earthquake Engineering
Collaboratory. In I. Foster and C. Kesselman, editors,The
Grid: Blueprint for a New Computing Infrastructure, Second
Edition. Morgan Kaufmann, 2004.

[20] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh.
Algorithm 539: Basic Linear Algebra Subprograms for
Fortran Usage [F1].ACM Transactions on Mathematical
Software, 5(3):324–325, Sept. 1979.

[21] M. Massie, B. Chun, and D. Culler. The Ganglia Distributed
Monitoring System: Design, Implementation, and
Experience.Parallel Computing, April 2004.

[22] H. L. McKeefry. Service Level Agreements: Get ’Em in
Writing.
http://techupdate.zdnet.com/techupdate/
stories/main/0,14179,2806173,00.html,
August 2001.

[23] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, and
C. Cirstoiu. MonALISA: A Distributed Monitoring Service
Architecture . InProceedings of the Conference on
Computing and High Energy Physics (CHEP), 2003.

[24] NSF Middleware Initiative Release 5.
http://www.nsf-middleware.org/NMIR5.

[25] A. Rajasekar, M. Wan, R. Moore, W. Schroeder,
G. Kremenek, A. Jagatheesan, C. Cowart, B. Zhu, S.-Y.
Chen, and R. Olschanowsky. Storage Resource Broker -
Managing Distributed Data in a Grid.Computer Society of
India Journal, Special Issue on SAN, 33(4):42–54, October
2003.

[26] R-GMA: Relational Grid Monitoring Architecture.
http://www.r-gma.org.

[27] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell.
PathChirp: Efficient Available Bandwidth Estimation for
Network Paths.Passive and Active Measurement Workshop,
2003.

[28] The Round Robin Database Tool Web page.
http://www.rrdtool.com.

[29] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and
F. Casati. Automated SLA Monitoring for Web Services. In
IEEE/IFIP DSOM, 2002.

[30] MCS Systems Administration Toolkit Web page.
http://www-unix.mcs.anl.gov/systems/
software/msys.

[31] A. K. Sinha, B. Ludaescher, B. Brodaric, C. Baru, D. Seber,
A. Snoke, and C. Barnes. GEON: Developing the
Cyberinfrastructure for the Earth Sciences - A Workshop

Report on Intrusive Igneous Rocks, Wilson Cycle and
Concept Spaces.http://www.geongrid.org/
workshops/conceptspace/igneous rocks/
workshop report intrusive igneous rocks.
pdf, 2004.

[32] Spruce home page.
http://project-iris.net/spruce.

[33] Apache Tomcat Web page.
http://jakarta.apache.org/tomcat.

[34] NCSA TestGrid Project.
http://grid.ncsa.uiuc.edu/test.

[35] The TeraGrid Project Web page.
http://www.teragrid.org.

[36] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany,
V. Taylor, and R. Wolski. A Grid Monitoring Architecture.
http://www.ggf.org/documents/final.htm.

[37] Tinderbox.
http://www.mozilla.org/tinderbox.html.

[38] H. Truong and T. Fahringer. SCALEA-G: a Unified
Monitoring and Performance Analysis System for the Grid.
In 2nd European Across Grids Conference, 2004.

[39] G. Tsouloupas and M. Dikaiakos. GridBench: A Tool for
Benchmarking Grids. InProceedings of the 4th International
Workshop on Grid Computing, pages 60–67, 2003.

[40] The Software Productivity Consortium’s Verification and
Validation Website.
http://www.software.org/pub/v&v.

[41] M. Wan, A. Rajasekar, R. Moore, and P. Andrews. A Simple
Mass Storage System for the SRB Data Grid. InProceedings
of the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems & Technologies, 2003.

[42] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman,
S. Tuecke, J. Gawor, S. Meder, and F. Siebenlist. X.509
Proxy Certificates for Dynamic Delegation. InProceedings
of the 3rd Annual PKI R&D Workshop, 2004.

[43] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing.Journal of Future Generation
Computing Systems, 15(5-6):757–768, October 1999.

[44] W. Yeong, T. Howes, and S. Kille. Lightweight Directory
Access Protocol. RFC 1777, The Internet Engineering Task
Force, 2000.

[45] X. Zhang, J. Freschl, and J. Schopf. A Performance Study of
Monitoring and Information Services for Distributed
Systems. InProceedings of HPDC-12, 2003.

10

